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The paper describes the synthesis and structural characterization of four novel copper(l) complexes [CuL(PPhs),]
(L = 3-hydroxy-3-(p-R-phenyl)-2-propenedithioate). In addition, a tautomeric equilibrium in solution was found and
Hammett correlations with 3C NMR parameters were studied. The structure of one complex was fully established
by X-ray diffraction analysis.

Introduction Scheme 1. Reaction of Methyl Ketones with GS

The reaction between methyl ketones and, Gfo- Q Cs, j\/ﬁ\ iH/ﬁ'\
duces the corresponding dithio acid compounds, which can R R SH R NX"Ngy
present a keteenol equilibrium in solutioh (Scheme 1).
This equilibrium is generally favored toward the chelating
enol form, when R= phenyl, because of its energetical "
stability 2 OH S—m o s

The 3-hydroxy-34§-R-phenyl)-2-propenedithioic acid has A/ ~ SH
shown different applications such as being the active moiety s
in ionic resins for transition metal ion separatidisn the R v R Vi
development of new Ayselective membrane electrodes,
and as hair-growing agents using Zn as metallic center, ~Weigand} Coucouvanig;*® and Lik* have proposed two
among others. But in all cases, the complex structures havePossible coordination mode¥ (@and V1) for these kinds of
not been determined. ligands (Chart 1); however, only a few examples displaying
S,S-coordination have been reported for Ni(ll), Pd(ll),
* Author to whom correspondence should be addressed. E-mail: cecilio@ Pt(Il),81112and Fe(0}*14 complexes (Chart 2).
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Chart 1. Possible Coordination Modes for 3-Hydroxy{3-R-phenyl-
2-propenedithioic Acids
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Cu(l) Complexes from 2-Propenedithioic Acids

Chart 2. Reported Complexes for 3-Hydroxy-2-propenedithioate cm™1): 2549.8 w, 2518.2 w, 1682.8 w, 1591.8 s, 1557.3 s, 1485.1
Ligands s, 1421.4 s, 1240.3 s, 1096.3 s, 968.5 s, 935.3 5, 774.2 vs, 736.9
o g TeCo) o s Te(Co) m, 645.4 m, 545.3 mH NMR (CDClg): ¢ 5.46 (s, 1H, H-9), 6.90
P *Fe(co) \#F co (s, 1H, H-2), 7.44 and 7.81 (ABB' system, 4HJ = 8.72 Hz,
S g~ ek H-6, H-5), 15.32 (s, 1H, H-8)C NMR (CDCE): & 107.9 (C-2),
R I R I 128.3 (C-5), 129.3 (C-6), 132.2 (C-4), 138.9 (C-7), 171.4 (C-3),
PR, 211.8 (C-1).
PR, o s N{ General Procedure. Synthesis of (3-Hydroxy-3g-methyl-
o s / Py “pr phenyl)-2-propenedithioateS,S)bis(triphenylphosphine-P)cop-
/M\PR s : per(l) (2a). A 1 equiv (0.56 mmol) amount of Cu(PBENOs in
g ° CH,CI, was added to an aqueous solution of ligand 1a (0.56 mmol)

Fe v
R I M = Pd(II), Pt(IT)
M = Pd(II), Pt(IT)

and NaOH (0.56 mmol). The original orange organic solution
became dark-red. The mixture was stirred for 15 min, and then the
organic layer was dried with N80O,. The solvent was distilled

. under vacuum. Then, ethanol was added to precipitate the complex,
synthesis of novel copper(l) complexes of type [CuL(gPh which was filtered out and dried under vacuum to obtain a red

(L = 3-hydroxy-3-p-R-phenyl)-2-propenedithioate). solid. Yield: 0.15 g (34%). Mp: 182183 °C. IR (KBr, cnY):

. . 3449.8 s, 3051.8 s, 1581.5 vs, 1556.3 vs, 1505.3 vs, 1433.5 vs,

Experimental Section 1210.9 vs, 1093.9 s, 1038.7 vs, 981.2 5, 745.2 vs, 694.3 vs, 508.8
Materials. FTIR spectra were recorded on either a Perkin-Elmer vs. FAB MS: myz 859.0, [M + Cu]*. HR FAB (mW2): calcd for

283 B or a Perkin-Elmer 1420 spectrophotometer in KBr. Melting CasH3sClOP.S,, 859.0510; found, 859.0472. Anal. Calcd for

points were measured on a Melt-Temp Il apparatus and are CsH3zgCUORS;: C, 69.3; H, 4.9. Found: C, 67.1; H, 431 NMR

uncorrectedH, 13C, and®'P NMR spectra were obtained ona JEOL  (CDCly): 6 2.37 (s, 3H, Me, keto), 2.40 (s, 3H, Me, enol), 4.59 (s,

Eclipse+300 using CDGas solvent. Chemical shifts were reported  2H, H-2, keto), 6.88 (s, 1H, H-2, enol), 7.20 and 7.72 (BE'

in o relative to TMS for'H and13C and 30% HPQ, for 31P. The system, 4H,J = 8.07 Hz, H-6, H-5, enol), 7.22 and 8.06 (A28’

MS-FAB* spectra were obtained on a JEOL JMS SX 102A. The system, 4HJ = 8.07 Hz, H-6, H-5, keto,), 7.25 (m, Pph13.01

3-hydroxy-3-p-R-phenyl)-2-propenedithioic acith—d were syn- (s, 1H, H-8, enol)*C NMR (CDCk): ¢ 21.6 (Me, keto), 21.7

thesized by Larsson’s methéeBis(triphenylphosphine)copper(l)  (Me, enol), 66.1 (C-2, keto), 113.2 (C-2, enol), 126.3 (C-6, enoal),

nitrate was obtained as reported in the literafiréhe keto-enol 126.5 (C-5, enol), 128.5 (aromatic, RPh C-5, keto), 129.2 (C-6,

tautomerism was studied B, 13C, COSY, and HETCOR NMR keto), 129.5 (aromatic, PRh132.9 (C-4, enol,), 134.7 (C-4, keto,),

experiments. 140.8 (C-7, enol,), 143.7 (C-7, keto,), 163.2 (C-3), 193.4 (C-1).
Synthesis of 3-Hydroxy-3-p-methylphenyl)-2-propenedithioic 3P NMR (CDCE) ¢ 0.01 (broad signal).

Acid (1a). Yield: 5.3 g (75%). Mp: 8586 °C (lit. mp: 85°C). (3-Hydroxy-3-phenyl-2-propenedithioateS,S)bis(triphenylphos-

IR (KBr, cm™1): 3433.0 w, 2920.1 w, 2544.0 w, 2497.7 w, 1605.1  phine-P)copper(l) (2b). Yield: 0.12 g (27%). Mp: 166167 °C.
m, 1581.7 m, 1551.1 s, 1502.7 m, 1426.7 m, 1251.1 s, 956.5 m, IR (KBr, cm™1): 3432.2 w, 3052.1 w, 1681.1 w, 1585.9 m, 1558.9
836.5m, 785.5 s, 674.6 i NMR (CDCl3): 6 2.41 (s, 3H, Me), s, 1484.1 m, 1432.2 m, 1206.3 m, 1093.6 m, 1044.3 m, 987.3 m,
5.38 (s, 1H, H-9), 6.95 (s, 1H, H-2), 7.26 and 7.77 (BB’ system, 745.5m, 693.2 s, 497.2 m. FAB MS1n/z 845.0, [M+ Cu]". HR
4H, J = 8.26 Hz, H-6, H-5), 15.38 (s, 1H, H-8}3C NMR FAB (m/2): calcd for GsH3,CwOP,S,, 845.0353; found, 845.0369.
(CDCly): 6 21.8 (Me), 107.9 (C-2), 127.1 (C-5), 129.8 (C-6), 130.8 Anal. Calcd for GsHs,CuORS,: C, 69.0; H, 4.8. Found: C, 68.7;
(C-4), 143.8 (C-7), 173.3 (C-3), 210.4 (C-1). H, 4.9.'H NMR (CDCly): ¢ 4.62 (s, 2H, H-2, keto), 6.89 (s, 1H,
3-Hydroxy-3-phenyl-2-propenedithioic Acid (1b).Yield: 1.8 H-2, enol), 7.25 (m, PRl 7.47 (t, H-6, enol), 7.42 (m, 2H, H-6,
g (62%). Mp: 86-89°C (lit. mp: 63°C). IR (KBr, cn%): 3430.8 keto), 7.53 (m, 2H, H-7, kete- enol), 7.96 (m, 2H H-5, enol),
w, 2512.1 w, 1591.1 m, 1550.2 s, 1486.6 m, 1452.8 m, 1244.5 s,8.17 (m, 2H, H-5, keto), 13.04 (s, 1H, H-8, enoffC NMR
912.4m, 822.9m, 757.9 s, 678.9 il NMR (CDCl3): 6 5.42 (s, (CDClg): 6 66.1 (C-2, keto), 113.6 (C-2, enol), 126.4 (C-5, enal),
1H, H-9), 6.96 (s, 1H, H-2), 7.46 (m, 2H, H-6), 7.55 (m, 1H, H-7), 128.2 (C-6, enol), 128.5 (aromatic, PP# C-6, keto), 128.6
7.87 (m, 2H, H-5), 15.36 (s, 1H, H-8¥C NMR (CDCk): 6 108.2 (aromatic, PP¥), 129.5 (C-5, enol), 130.4 (C-7, enal), 132.9 (C-7,
(C-2), 127.0 (C-6), 129.0 (C-5), 132.7 (C-7), 133.8 (C-4), 172.9 keto), 133.7 (aromatic, PR 135.8 (C-4, enol), 136.9 (C-4, keto),

(C-3), 211.4 (C-1). 162.9 (C-3), 193.7 (C-1§P NMR (CDCH): 6 0.31 (broad signal).
3-Hydroxy-3-(p-fluorophenyl)-2-propenedithioic Acid (1c). (3-Hydroxy-3-(p-fluorophenyl)-2-propenedithioate-S,S ) bis-
Yield: 2.0 g (12%). Mp: 6770 °C (lit. mp: 74°C). IR (KBr, (triphenylphosphine-P)copper(l) (2c). Yield: 0.32 g (60%).

cml): 2495.5w, 1593.9 s, 1562.3 s, 1434.2 m, 1228.0 s, 1157.2 Mp: 176-178°C. IR (KBr, cn'%): 3440.7 w, 3045.7 w, 1678.5

m, 960.3 m, 841.3 m, 773.5 m, 572.5 A NMR (CDCls, 298 w, 1594.9 s, 1565.2 s, 1499.7 s, 1432.2 s, 1227.0 5, 1201.5 5, 1154.4
K): 6 5.42 (s, 1H, H-9), 6.89 (s, 1H, H-2), 7.14 (m, 2H, H-6), s 1092.7 s, 1034.2 s, 981.3 m, 843.3 s, 743.4 s, 693.3 5, 510.1 S.
7.88 (m, 2H, H-5), 15.35 (s, 1H, H-8C NMR (CDCk): 6 107.9 FAB MS: m/z 863.0, [M + Cu]". HR FAB (m2): calcd for

(s, C-2), 116.3 (d?Jc—F = 21.92 Hz, C-6), 129.4 (FJc— = 9.23 CasH3cCWFOPRS,, 863.0259; found, 863.0270. Anal. Calcd for
Hz, C-5), 129.9 (C-4), 165.5 (dJc—r = 261.34 Hz, C-7), 171.7  C,sH;CUFORS,: C, 67.4: H, 4.5. Found: C, 67.1; H, 4H NMR

(C-3), 211.4 (C-1). (CDCL): 6 4.57 (s, 2H, H-2, keto), 6.83 (s, 1H, H-2, enol), 7.06
3-Hydroxy-3-(p-chlorophenyl)-2-propenedithioic Acid (1d). (m, 4H, H-6, ketot enol), 7.25 (m, PPJ), 7.79 (m, 2H, H-5, enol),
Yield: 2.5 g (14%). Mp: 8891 °C (lit. mp: 99.5°C). IR (KBr, 8.18 (m, 2H, H-5, keto), 13.04 (s, 1H, H-8, enof})C NMR
(CDCl): ¢ 66.2 (C-2, keto), 113.4 (C-2, enol), 115.6 (C26;_¢
(15) Larsson, F. C. V.; Lawesson, S.-Detrahedron1972 28, 5341. =218 HZ, enoH- keto), 128.5 (aromatic, Pm 129.7 (aromatic,

(16) (a) Cotton, F. A.; Goodgame, D. M. LJ; Chem. Socl96Q 5267. o
(b) Jardine, F. H.; Vohra, A. G.; Young, F. J. Inorg. Nucl. Chem. PPh), 131.9 (C-4, enol), 132.1 (C-8)c—r = 9.2 Hz, keto+ enol),

1971, 33, 2941. 133.4 (C-4, keto), 133.7 (aromatic, PpHL61.8 (C-3), 164.1 (C-
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Table 1. X-ray Crystallographic Data for Comple2a

Garcia-Orozco et al.

Scheme 2. Preparation of Copper(l) Coordination Compourds-d

¥ P(Ph),
formula CisH39CUORS, O,H s " 3
fw 797.37 S 4 M ) NaOH/H,0 07 S—cy
cryst system monoclinic 6 ,\2 AN 2 N/ SpPh)
3
space group 521/0 R 1 ii) Cu(P(Ph);),NO, / CH,Cl, 3 s
a A 13.947(2) 1a: R=Me 2a: R=Me
b A 10.828(2) R 2: R=H
c, A 26.508(3) 1d: R=Cl gz E;'(:'JI
B, dAeg 92.750(1)
vV, A3 3998.6(1) 1 1 ; ; ; _
Geaos glcn? 1325 Table 2. 1H and!3C NMR Chemical Shifts for Ligand$a—d
temp, K 293 atom la 1b 1c 1d
wavelength, A 0.71073 5CH)
abs coeff, mm? 0.765
' : 2 H-9 5.38 5.42 5.42 5.45
goodness of fit o Lou H-2 6.95 6.96 6.89 6.90
R’N b oz 1'0 28 H-6 7.26 7.46 7.14 7.44
' ' H-5 7.77 7.87 7.88 7.81
AR = Z(|Fo| — |Fel)/ZIFol. ® Ry = {[2W(Fo? — FA)/[ZwW(Fe?)} 2 H-8 15.38 15.35 15.35 15.38
o(*3C)
7, c-F = 251.5 Hz, enol), 165.7 (C-#Jc—r = 251.5 Hz, keto), c-2 107.9 108.2 107.9 107.9
192.1 (C-1).3'P NMR (CDC}): 6 0.50 (broad signal). C-6 129.8 127.0 116.3 129.3
(3-Hydroxy-3-(p-chlorophenyl)-2-propenedithioateS,S)bis- C-4 130.8 133.8 129.9 132.2
. . . C-5 127.1 129.0 129.4 128.3
(triphenylphosphine-P)copper(l) (2d). Yield: 0.50 g (54%). c.7 1438 132.7 1655 138.9
Mp: 150-154°C. IR (KBr, cnt1): 3442.1 w, 3051.8 w, 1680.0 c-3 173.3 172.9 171.7 171.4
w, 1584.0 s, 1553.6 s, 1483.4 s, 1434.1 s, 1238.2 m, 1209.8 s, C-1 210.4 211.4 211.4 212.1

1093.0 s, 1036.6 s, 985.0 m, 819.9 m, 744.7 s, 694.4 s, 510.1 s.

FAB MS: mvz 879.0, [M + Cu]*. HR FAB (m/2): calcd for acid bis(triphenylphosphine)copper(l) leads to a decrease the

CusH36CICLOP,S,, 878.9963; found, 878.9956. Anal. Calcd for C=S bond strengtP A similar behavior has been observed

CssH3sCICUORS;: C, 66.1; H, 4.4. Found: C, 64.9; H, 4.5 in analogous Ni(ll), Pd(ll), and Pt(ll) complex&sand

NMR (CDC): 06 4.55 (s, 2H, H-2, keto), 6.82 (s, 1H, H-2, enol),  copper(l) thiourea complexé®. The characteristic tri-

7.25 (m, PPE), 7.35 and 8.08 (A/BB’ system, 4H) =8.07 Hz,  phenyiphosphine vibrations were observed at 1433, 1094,

1O ke 90400 12483 system 14767 He. 745, ana 64 ot

H-6, H-5, enol), 13. S, , H-8, enol)3 : . . .

66.2 (C-2, keto), 113.6 (C-2, enol), 127.6 (C-6, keto), 128.5 The molecular ion is not observed in the FABnass
spectrum of2a; however, a peak that corresponds to the

(aromatic, PP¥), 128.8 (C-5, enol), 129.6 (aromatic, RRH.30.8 . g
(C-5, enal), 130.9 (C-6, keto), 133.8 (aromatic, PPh34.3 (C-7, adduct of the expected molecular ion with a copper atom

enol), 135.3 (C-4, enol), 136.3 (C-4, keto), 139.3 (C-7, keto), 161.3 [M + Cu]" appeared am'z 859. The isotopic distribution
(C-3), 192.5 (C-1)3P NMR (CDCE): ¢ 0.03 (broad signal). of this species is in agreement with the calculated composi-

X-ray Crystallography. Red crystals of compoungda were tion. The second copper ion may be bonded through the
obtained by slow diffusion of dichloromethane/methanol system already coordinated sulfur atoms of the complex by means
at room temperature. Details of crystal data collected are provided of a weak interaction, as it was observed in other sulfur
in Table 1. The structure was solved using direct methods. complexed420Likewise, a peak atvz 534, assigned to the
Anisotropic structure refinements were achieved using full-matrix fragment [M- — PPh], was observed.
least-squares techniques on all non-hydrogen atoms. All hydrogen The !H NMR spectrum oPa presents several differences
atoms (except H-1) were placed in ideal positions on the basis of in comparison td.a (Table 2). The enolic proton signal H-8

hybridization, with isotropic thermal parameters fixed at 1.2 times . . . . S S
the value of the attached atom. Structure solution and refinements'” lais Sh'fte_d “Pf'e'd from) 15.38 to 13.01, which is due
to the coordination of sulfur to the copper and hence a

were performed using SHELXTL V 6.20.Selected bond distances h .
decrease of electronic density on the sulfur atom. The

and bond angles for compour2a are given in Tables 5 and 6.
corresponding signal for the vinylic proton is observed at
Results and Discussion 6.88.

The syntheses of copper(l) complexes were carried out 1he**C NMR data provided further evidence supporting
by following Scheme 2. The reaction of 3-hydroxy{3-( this _coordln_atlng pattern. The S|gn_al a_ttnbuted to C-1 and
methylphenyl)-2-propenedithioic acidld) with bis(tri- C-3 in the ligandla are shifted upfield in the comple&'?l
phenylphosphine)copper(l) nitrate, at room temperature, from 0 210.4.and 173.3 to 193.4. an_d 163.2, respectlvely,
yields a stable red crystalline solid. The structure for complex While the assigned signal to the vinylic carbon atom C-2 is
2awas assigned according to spectroscopy data. shifted downfield fromd 107.9 to 113.2. These shifts are

IR spectrum of2a shows thev(C=S) vibration (1251
cm™Y) shifted substantially to lower wavenumber than those
of the free ligand$(C=S) 1210 cm?*, Av = 41 cn!]. This
means that coordination of ligaridh to the cationic Lewis

(18) Nakamoto, Kinfrared and Raman spectra of inorganic and coordina-
tion compounds. Part B5th ed.; J. Wiley: New York, 1997; p 1.

(19) Bombicz, P.; Mutikainen, I.; Krunks, M.; Leskel&.; Madafaz, J.;
Miinistrd, L. Inorg. Chim. Acta2004 357, 513.

(20) Coucouvanis, D.; Piltingsrud, 0. Am. Chem. S0d.973 95, 5556.
(b) Vicente, J.; Chicote, M. T.; Huertas, S.; Bautista, D.; Jones, P. G.
Inorg. Chem2001, 40, 2051. (c) Vicente, J.; Chicote, M. T.; Huertas,
S.; Jones, P. G.; Fischer, A. Korg. Chem.2001, 40, 6193.

(17) SHELXTL, version 6.10; Bruker Analytical X-ray Systems: Madison,
WI, 2000.
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Cu(l) Complexes from 2-Propenedithioic Acids

Table 3. H and®P NMR Chemical Shifts an#eq at Tams for
Complexe2a—d

2a 2b 2c 2d
O(*H) keto (3) H-2 4.59 4.62 4,57 4.55
H-6 7.22 7.42 7.06 7.35
H-5 8.06 8.17 8.18 8.08
phosphines 7.157.45 7.15-7.35 7.16-7.40 7.106-7.40
enol (2) H-2 6.88 6.89 6.83 6.82
H-6 7.20 7.47 7.06 7.35
H-5 7.72 7.96 7.79 7.72
H-8 13.01 13.04 13.05 13.02
o(3P) 0.10 0.31 0.50 0.03
KedTamb) 1.13 1.52 1.78 1.76

Table 4. 13C NMR Chemical Shifts for Complexeza—d
2a 2b 2c 2d

C-2 66.1 66.1 66.2 66.2

C-5 128.5 129.5 132.1 130.9

C-6 129.2 128.2 115.6 127.6

C-4 134.7 136.9 1334 136.3 Figure 1.

C-7 143.7 132.9 165.7 139.3

C-3 163.2 162.9 161.8 161.3 Table 5. Selected Bond Distances (A) f@a

C-1 1934 193.7 192.1 192.5
enol (2) C-2 113.2 113.6 113.4

C-5

C-6

C-4

C-7

C-3

C-1

5(3C)  keto (3)

1136 Cu-P1 2.263(1) c1s2 1.707(5)
es o4 131 oo Cu-P2 2.268(2) CiC2 1.448(8)
Cu-S1 2.381(1) c2c3 1.366(8)
1263 1285 1156  130.8
Cu-S2 2511(2) c3o1 1.338(7)
1329 1358 1319 1353 w32 2511 . 13
1408 1304 1641 1343 C1-s -701(6) csC -466(8)

163.2 162.9 161.8 161.3
193.4 193.7 192.1 192.5 Table 6. Selected Bond Angles (deg) f@a

. L o ) P—Cu—P 123.78(6) SCu-S 73.20(6)
attributed to the coordination of the bis(triphenylphosphine)-  pi1—cu-s1 113.76(6) P2Cu—-S2 106.16(6)
copper(l) moiety to ligandathrough the sulfur atoms. These P1-Cu-S2 109.00(6) StC-S2 117.8(3)

observations are in agreement with previously reported P2-Cu-St 117.65(5)

palladium(ll) coordination compoun®® and copper(l) Table 7. Bond Distances (&) and Angles (deg) of Intramolecular

clusters?t Hydrogen Bonds fofa
The 3P NMR spectrum exhibits a single broad signal  o-H 0.94(7) 0-S 2.956(5)
centered ad 0.10. This signal appears at a lower field in SeeH 2.08(7) G-H---S 155(6)

comparison to that of the free triphenylphosphide4(0),
confirming the coordination of phosphine to the atom copper. i 22 Th i
Even though these ligands have been known since 3910, igand* The C_Z_CS’ C1-C2, and C3-O b%r%d distances
there are only few examples of transition metal coordination and a strong mtramolecular. hydrogen b&n{Table ,7)
compounds 12 where the ligands are bonded through both confirmed _that the enol form is the more stable one in the
sulfur atoms in 1,1-dithiolate fashion (Chart 1). To the best CryStal solid state. _
of our knowledge, complega is the first example where On the other hand, the average <R distances are
this ligand is bonded as a dithio acid resuling in a compqrable to those reported in the literature for copper (1)
mononuclear complex instead of polynuclear compounds asphosp!ne -com-plexe?é. )
reported for sulfur ligand analogu&sié Equilibrium in Solution. In CDCls, these copper com-
The syntheses of complex2b—d were carried out using plexes exist in two tautome_ric forms, gn@l)(.a_nd keto B) )
the same procedure. All compounds displayed featurestautomers (Scheme 3), which can be identified on the basis

similar to those oPa. 1H, 13C, and®*®P NMR data are given of their NMR spectra (Tables 3 and 4). The NMR spectra
in Tables 3 and 4. of copper(l) complexea—d have shown characteristic

chemical shifts for each tautomeric species.'th NMR
spectra, the most salient signals for structAr¢H-8 and
H-2) were described; vide supra. In all the complekasd

coordination mode commonly presented by the dithio acid

Crystal Structure of Compound 2a. The proposed
structure forzawas fully established by means of an X-ray
diffraction analysis (Figure 1 and Table 5). The metal center
is bonded to the ligand through both sulfur atoms in an

(23) Livingstone, S. E. l€omprehensie Coordination Chemistrywillkin-

anisobidentate fashion forming a four-member ring. The son, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: Oxford,
Ci5 i i U.K., 1987; p 584.

central copper atom forms a core WIFh approxmately (24) (a) Jeffrey, G. A.An introduction to Hydrogen BondingOxford

tetrahedral geometry. Geometry distortion arises from the University Press: Oxford, U.K., 1997; p 12. (b) Steiner,Ahgew.

bite S-C—S angle (ca. 73 and the steric hindrance of (25) %F;egl, Int. idZ&OZ 4_11t,1 4'3. Nardin. G. O * Chem980

. : o . a) Camus, A.; Marsich, N.; Nardin, G. Organomet. Che
triphenylphosphine atPCu—P angle (Table 6). This is the 188 389. (b) Nakahodo, T.. Hom, E.. Tiekink, E. R. Rcta
Crystallogr.200Q C56, 1316. (c) Jian, F.; Bei, F.; Lu, X.; Yang, X.;

(21) Coucouvanis, D.; Swenson, D.; Baezinger, N. C.; Pedelty, R.; Caffery, Wang, X.; Razak, I. A;; Raj, S. S. S.; Fun, H.-Kcta Crystallogr.
M. L.; Kanodia, S.Inorg. Chem.1989 28, 2829. 200Q C56, €288. (d) Deivaraj, T. C.; Vittal, J. Acta Crystallogr.

(22) Kelber, C.Ber. Dtsch. Chem. Ge491Q 43, 1252. 2001 E57, m566.
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Scheme 3. Tautomeric Equilibrium in Solution Table 8. Hammett Linear Correlation af and Ad for Compounds
. P(Ph), T(Ph)a 2a—d
oM s— ¢y 0 S—¢u atom eq r S eq no.
A J eeny AL e, C3  0=1727-537% 0981 0918 1
; ;s c1 5=211.1+ 3.886» 0.930  0.699 2
R C-12 Ad=—17.9— 7.53 0.986 1.252 3
A R™7 B

a8 A0 = dempx — Oiig has been considered.
a singlet in the regiord 4.55-4.62 was assigned to the
methylene protons H-2 for structui the acquired slope for eq 2 suggests that electron-donor

Similarly, in the'3C NMR spectra oRa—d, a signal av substituents increase the electron density over C-1 and the
66.0 assigned to methylene group C-2 (structBjewas donor ability of sulfur is enhanced. This is in agreement with
observed. Chemical shifts of both dithio acid carbon C-1 the data reported for the Pd(Il) complexes of these ligéfitis.
and enol carbon C-3 atoms are common for both the forms In the case of copper(l) complex2a—d a shielding effect
(Table 4). The tautomeric equilibrium was also confirmed on C-1 (Ad) was observed with respect to the free ligand. A
by means of variable-temperature NMR experiments. The linear correlation of sucthd was established (eq 3). From
intensity relationship of each equilibrium species varies with the estimated slope, we conclude that electron-withdrawing
temperature; at a high temperature the keto tautomersubstituents enhance the shielding effect. However, the
concentration increases, as in acetylacetone derivéives. increment of the electron density on C-1 in the complexes

To calculate the equilibrium constants faa—d com- is opposite to the free ligand behavior (eq 1). This effect
pounds, both the enol H-8 and methylene H-2 signals werecould be explained byz back-bonding from the bis-
integrated to determine the population of each tautomer on (triphenylphosphine)copper(l) fragment to the lig&hend
equilibrium and the methylene integral value was normalized. this can also be observed in the IR data #(€=S) in the
The value of the tautomeric equilibrium constants were complexefa—d (vide supra). To our knowledge, this is the
calculated by taking the ratideq = [enol]/[keto] (Table 3). first time where ar back-bonding effect is observed by NMR
In general Keqs values reveal that the enol tautomer is the techniques and Hammett correlation analysis.
main species in equilibrium and that the electron-withdrawing
substituents favor this same tautorffer.

It is important to note that ligandsa—d do not present Four new mononuclear copper(l) complexeza<d)
tautomerisnf,which may be due to the formation of a formal  derived from ligandsla—d have been synthesized and
intramolecular hydrogen bond hence stabilizing the enol characterized, and the dithioate-coordination fashion of these
specied’ However, their copper(l) complexes have the ability jigands is observed for the first time. In solution, complexes
to undergo a ketoenol equilibrium. Thus, we propose that  2a—d present kete-enol tautomerism where the enol tau-
copper(l) coordination reduces the strength of the intra- tomer was predominant at room temperature and favored by
molecular hydrogen bond, prompting the tautomeric equi- electron-withdrawing groups, as was demonstrated by NMR.
librium. Moreover, the shift to lower wavenumbers of  ggome linear correlations d8C NMR data and Hammett
v(C=S) in IR spectrum and the enolic proton signal H-8 gypstituent constants were found for the ligaha-{d) and
shifting upfield in*H NMR spectrum support this behavior.  the complexesa—d), and a shielding effectA) on C1

Hammett Correlation Studies.In a previous study of free  could be related to a back-bonding effect. This is the first

ligands, Larsson and Lawesson observed a linear correlationreport of ax back-bonding effect being observed B
between NMR chemical shifts of enol protons and Hammett NMR and Hammett correlation analysis.

constant$® To define the electronic influence of the sub-

stituent on the aromatic ring over the coordination centers, Acknowledgment. We are grateful to Rocio Pabrand
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In the *3C NMR spectra of ligandéa—d, a correlation of 2a, and plots of Hammett correlations. This material is available
the chemical shift for C-3 with Hammett substituent constants free of charge via the Internet at http:/pubs.acs.org.
was found (eq 1). According to the obtained slope, we 1C0488132
deduced that electron-donating substituents decrease electron
density that leads C-3 to show carbonyl behavior. Moreover

Conclusions

' (29) This could be better explained by means of resonance-assisted
hydrogen-bonding theory: (a) Steiner,Ghem. Commuri998 411.

(26) Toullec, J. InThe Chemistry of the EnoRappoport, Z., Ed.; Wiley: (b) Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, VJ. Am. Chem.
Chichester, England, 1990; pp 32398. Soc 1989 111, 1023. (c) Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G.
(27) March, J.; Smith, M. BMarch's Advanced Organic Chemistrybth J. Am. Chem. So@991 113 4917. (d) Gilli, P.; Bertolasi, V.; Ferretti,
ed.; J. Wiley: New York, 2001; p 370. V.; Gilli, G. J. Am. Chem. S0d994 116, 909. (e) Gilli, P.; Bertolasi,
(28) May, W. R.; Jones, M. MJ. Inorg. Nucl. Chem1962 24, 517. V.; Ferretti, V.; Gilli, G.J. Am. Chem. So200Q 122, 10405.
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